Molecular identification of *Giardia duodenalis* isolates from domestic dogs and cats in Wroclaw, Poland

Jolanta Piekarska¹, Joanna Bajzert², Michał Gorczykowski¹, Magdalena Kantyka¹, Magdalena Podkowik³

¹ Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Division of Parasitology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Poland

² Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Division of Immunology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Poland ³ Department of Food Hygiene and Consumer Health Protection, Division of Food Microbiology and Processing Hygiene, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Poland

Piekarska J, Bajzert J, Gorczykowski M, Kantyka M, Podkowik M. Molecular identification of *Giardia duodenalis* isolates from domestic dogs and cats in Wroclaw, Poland. Ann Agric Environ Med. 2016; 23(3): 410–415. doi: 10.5604/12321966.1219178

Abstract

Introduction. *Giardia duodenalis* (*G. intestinalis*) is a common protozoan causing gastrointestinal disorders in many species of mammals. The genus of *Giardia* has high molecular diversity. Dogs and cats, in addition to their typical infection with assemblages C, D and F, may be a reservoir of zoonotic assemblages (A and B).

Objective. The aim of this study was a genetic characteristic of *Giardia* isolates of dogs and cats from the area of Wroclaw (Poland).

Materials and method. A total of 128 and 33 faecal samples from dogs and cats, respectively, were analyzed by routine coprological methods. The animals were diagnosed on the presence of *G. duodenalis* antigens in faeces soluble with the use of SNAP *Giardia* (IDEXX Laboratories) immunosorbent assay. 27 DNA isolates of *Giardia* were subjected to molecular identification (PCR-RFLP).

Results and conclusions. The prevalence of *G. duodenalis* was 21.1% (27/128) in dogs and 15.1% (5/33) in cats. In dogs, C assemblage was present in 18 (81%) positive stool samples, D assemblage in 2 (9%) samples, B assemblage present in one (4.5%), and mixed assemblages (C and D) occurred in one (4.5%) sample. F assemblage was found in 4 (80%) cats' positive stool samples and A assemblage occurred in one case (20%). Confirmation of the presence of A and B zoonotic assemblages suggests that infected pets can be a threat to human health. This study describes for the first time the presence of mixed infections within host-specific C and D assemblages in dogs in Poland.

Key words

Giardia duodenalis, assemblage, dogs, cats, nested-PCR, PCR-RFLP, zoonosis

INTRODUCTION

Giardia duodenalis (G. intestinalis, G. lamblia) is a widespread protozoan parasitizing in humans and many species of mammals. Invasion is most commonly associated with the occurrence of gastrointestinal signs, though asymptomatic invasions have also been observed [1]. Studies using molecular techniques have shown that genetic diversity is very high within the G. duodenalis species. There are 7 basic assemblages, from A - G. The occurrence of A, B, C and D assemblages was confirmed in dogs, and A, B, D and F assemblages found in cats. Due to the occurrence of A and B assemblages in humans, and because of their relevance for zoonotic infections, there is a need for the monitoring of dogs and cats as companion animals that can be a direct source of human infection, as well as a source of environmental contamination [2, 3]. Asymptomatic and chronic course of the disease with frequent periodic expulsion of cysts is

Address for correspondence: Jolanta Piekarska, Department of Parasitology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Poland

E-mail: jolanta.piekarska@up.wroc.pl

Received: 19 October 2013; accepted: 01 July 2014

observed in older animals. Diagnosis of Giardia infection with the use of a faecal flotation or faecal smear is problematic due to the irregular shedding of cysts and their morphology, small size, and their similarity in appearance to many pseudoparasites such as yeast [4]. The use of immunoenzyme assay to detect Giardia coproantigens in faeces increases the probability of detecting invasion. Genotypic characterization of G. duodenalis is a very useful and essential tool used in epidemiological studies. PCR techniques for genotyping of G. duodenalis are based on polymorphic genes encoding 18S rRNA, glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), and ß-giardin [5, 6]. PCR amplification and RFLP/sequence analysis of all of these genes, with the exception of the 18S rRNA, can differentiate subgenotypes of assemblage A [7]. PCR methods for detection of gdh can provide information on G. duodenalis A and B subassemblages [8].

OBJECTIVE

The aim of the study was the genetic characterization of isolates of *Giardia* in dogs and cats in the area of Wroclaw (Poland), which is important in determining the source of

Jolanta Piekarska, Joanna Bajzert, Michał Gorczykowski, Magdalena Kantyka, Magdalena Podkowik. Molecular identification of Giardia duodenalis isolates from...

the invasion in humans and animals in a given area, as well as in assessment of the zoonotic potential of *G. duodenalis*.

MATERIALS AND METHOD

Samples collection and qualification. Faecal samples of dogs and cats (age: 3 weeks – 10 years) from Wroclaw were collected in 2010–2012 and provided by their owners to the Division of Parasitology, Faculty of Veterinary Medicine (Wroclaw). The total number of stool samples was 161 (128 dogs and 33 cats), all of the animals had different gastric symptoms (e.g diarrhea, emaciation, loss of body weight). Faecal samples were stored at -20 °C. The animals were diagnosed on the presence of *G. duodenalis* antigens in faeces soluble with the use of SNAP *Giardia* (IDEXX Laboratories) immunosorbent assay. As a result of such qualifications, material for genetic research was obtained from 32 animals (27 dogs and 5 cats). Pets with positive test results ranged in age from 3 weeks – 2 years.

DNA isolation. Faecal samples (approximately 3-4 g) from infected animals were examined by the flotation method with the use of saturated NaCl solution. The upper part of the supernatant was harvested, rinsed in distilled H₂O, centrifuged at 1,000 rpm for 5 minutes. The resulting pellet was re-suspended in 300 µl of saline. This was a concentrated sample of *Giardia* cysts, which were the basis for DNA isolation using a Genomic Mini AX STOOL kit (DNA-Gdansk, Poland).

Genotyping and nested PCR. Giardia genotyping was performed based on the polymorphism of a gene fragment coding for β -giardin. Nested PCR technique for DNA amplification was applied. Reaction parameters and primers sequences were described in Lalle et al. (2005) [9]. In the primary PCR reaction forward G7: 5'AAGCCCGAC-GACCTCACCCGCAGTGC3' and reverse G759: 5'GAGGCCGCCCTGGATCTTCGAGACGAC3' primers were used. The reaction mixture consisted of 400 nM of each primer, 1 x reaction buffer for polymerase DNA Delta3, 500 µM of dNTP, 3 mM of MgCl₂, 1.25 U (0,05 U/µl) of polymerase DNA Delta3 (DNA-Gdansk, Poland) and 0.5 µl of DNA in a final volume of 25 μ l. The amplification was carried out in a MJ Mini thermal cycler (Bio-Rad) using the following conditions: cycle of 96 °C for 5 min; 5 cycles of: initially denaturation for 30 sec at 95 °C, annealing for 30 sec at 55 °C, polymerization for 1 min at 72 °C. The PCR cycle was then carried out for 30 sec at 95 °C, 30 sec at 65 °C and 1 min at 72 °C, for a total of 30 cycles, followed by a final extension for 10 min at 72 °C. The secondary PCR reaction was amplified with forward 511: 5' GAACGAACGAGATCGAGGTCCG'3 and reverse 511: 5' CTCGACGAGCTTCGTGTT 3' primers. The amplification conditions were almost the same as in the first reaction with only 2 differences. The annealing temperature was changed, the first was 50 °C and the second was 55 °C and no final extension was carried out. The amplicons of the first PCR reaction (753 bp) was the matrix of secondary PCR reaction.

Amplicons of second PCR reaction (total volume = 100μ l) were subjected to electrophoresis in 2% agar gel. PCR products with a length of ~511 bp were isolated from the gel and purified using a set of DNA Extraction Kit (Fermentas). DNA

concentration was determined by absorbance measurements at 260 nm wavelength. Purified products were digested with restriction enzyme BsuRI/HaeIII (Fermentas) for 2 hours at 37 °C. The required enzyme amount was calculated based on its activity on the lambda phage. Digestion products were electrophoresed in a 5% agarose gel for 2h at a constant 120V. Products were stained with ethidium bromide and photographed with a BioRad GelDoxXR device.

Identification of genotypes of sequenced DNA. Selected products of PCR reaction of approximately 511bp were subjected to DNA sequencing by GENOMED S.A. (Poland). The obtained results of sequencing were analyzed by comparing the sequence of individual genotypes of *G. duodenalis* with BLAST NCBI (http://blast.ncbi.nlm. nih.gov) database. The partial sequences of β - giardin gene obtained in this study were compared with sequences deposited in the GenBank database under Accession Nos.: Assemblage A- FJ560591.1; Assemblage B- AY072725.1; Assemblage C- AY545646; Assemblage D- AY545647.1; Assemblage F- AY647264. BioEdit and APE A Plasmid Editor software tools were used for verification of sequence compliance.

RESULTS

In the study by nested PCR, *Giardia* DNA was detected in 27 of 32 tested stool samples (22 dogs and 5 cats). In 4 cats, the presence of assemblage F was revealed and in 1 cat it was assemblage A. Of the 22 dogs' stool samples, assemblage C was detected in 18 cases, assemblage D in 2 cases, assemblage B in 1 case.

Selected products of nested PCR reaction (~511bp) were sequenced and analyzed using the GenBank database. Analysis of the sequence results in cases where one assemblage was identified clearly confirmed the results obtained from RFLP. Figure 1 shows selected results of sequencing which, in turn, helped to identify the assemblages: A (Fig. 1A), B (Fig. 1B), C (Fig. 1C), D (Fig. 1D), F (Fig. 1E). There were no specific products for any of the previously identified assemblages in electrophoresis of 1 sample derived from a dog after digestion with HaeIII enzyme. The sense strand sequencing results of a β -gardin gene indicated the presence of assemblage C (Fig. 2A). However, sequencing of the antisense strand showed the presence of assemblage C or D, giving an appropriate sequence homology at the level of 0.988 and 0.949. In the analyzed antisense strand stool sample, the cut places were present at 194, 296, 311bp, while characteristic cut places for assemblage C were present at 194, 296, 311 and 461bp (Fig. 2B) and for assemblage D only in 194 and 311bp (Fig. 2C). Therefore, it is presumed that in this stool sample from dog we are dealing with a mixed infection of assemblages C and D, this observation was confirmed by the results of electrophoretic analysis of nested PCR product digested by BsuRI enzyme (data not shown).

In 5 dogs, despite the positive test of SNAP *Giardia* (IDEXX Laboratories), the PCR product was not detected. The nested PCR repeated one more time with the matrix volume increased to $2-4 \,\mu$ l in $25 \,\mu$ l of reaction mixture and with the revised polymerase, did not produce satisfactory results. Re-isolation of DNA from thawed samples also did not allow DNA product to be obtained.

Figure 1 A-E. Multiple alignment of the *G. duodenalis* assemblage of β-giardin genes in nested PCR. Alignment based on maximum similarity of individual assemblages of *G. duodenalis* in the classification of Lalle et al. 2005. The underlined zone indicates a cut place of restrictive enzyme. The grey zone indicates differences in DNA sequence (no consensus at this position)

	A) Assemblage A- Accession number FJ560591.1
Assemblage A Cat Nol	10 20 30 40 50 GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACACGCCC GTGAAGATCA GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACACGCCC GTGAAGATGA GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACACGCCC GTGAAGATGA GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACACGCCC GTGAAGATGA
Assemblage A Cat Nol	60 70 80 90 100 TCAAGGACGC CATCGACAC CTCGACAGGC TCATCCAGAC GGAGTCGAGG TCAAGGACGC CATCGACAC CTCGACAGGC TCATCCAGAC GGAGTCGAGG 110 120 130 140 150
Assemblage A Cat Nol	AAGCGCCA <u>GG</u> CCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCCGC AAGCGCCA <u>GG</u> CCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCCGC
Assemblage A Cat Nol	CGACAACATG TACCTAACGA TCAAGGAGGA GATCGACACC ATGGCTGCAA CGACAACATG TACCTAACGA TCAAGGAGGA GATCGACACC ATGGCTGCAA
Assemblage A Cat Nol	ACTTCCGCAA GTCCCTTGCG GAGATGGGCG ACACACTCAA CAACGTTGAG ACTTCCGCAA GTCCCTTGCG GAGATGGGCG ACACACTCAA CAACGTTGAG
Assemblage A Cat Nol	ACAAATCTCC AGAACCAGAT CGCCATCCAT AACGACGCCA TCGCGGCTCT ACAAATCTCC AGAACCAGAT CGCCATCCAT AACGACGCCA TCGCGGCTCT
Assemblage A Cat Nol	CAGGAAGGAG GCCCTCAAGA GCCTGAACGA TCTCGAGACG GGCATTGCCA CAGGAAGGA <u>G GCC</u> CTCAAGA GCTTGAACGA CCTCGAGACG GGCATTGCCA
Assemblage A Cat Nol	CGGAGAACGC AGAAAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC CGGAGAACGC AGAAAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC
Assemblage A Cat Nol	GCAGAGGGGCT TCGCCCGCAT CTCCGCCGCG ATCGAGAAGG AGACGATCGC GCAGAGGGGCT TCGCCCGCAT CTCCGCCGCG ATCGAGAAGG AGACGATCGC 460 470 480 490 500
Assemblage A Cat Nol	CCGCGAGAGAG <u>GCC</u> GTTAGCG CTGCCACGAC AGAAGCGCTC ACAAACACGA CCGCGAGAG <u>G GCC</u> GTTAG <mark>T</mark> G CTGCCACGAC AGAAGCGCTC ACAAACACGA . 510
Assemblage A Cat Nol	AGCTCGTCGA G AGCTCGTCGA G

412

Assemblage C Dog No2	
Assemblage C Dog No2	TCAAGGACGC CATCGCTCAC CTGGACAGGC TCATCCAGAC CGAGTCGAGG TCAAGGACGC CATCGCTCAC CTGGACAGGC TCATCCAGAC CGAGTCGAGG
Assemblage C Dog No2	AAGCGCCAGG GCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCCGC AAGCGCCAGG GCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCCGC
Assemblage C Dog No2	CGACAACATG TACCTGACGA TCAAGGAGGA AATCGACACC AT <u>GGCC</u> GCGA CGACAACATG TACCTGACGA TCAAGGAGGA AATCGACACC AT <u>GGCC</u> GCGA
Assemblage C Dog No2	ACTTCCGCAA GTCCCTCGCC GAGATGGGCG AGACCCTCAA CAACGTCGAG ACTTCCGCAA GTCCCTCGCC GAGATGGGCG AGACCCTCAA CAACGTCGAG
Assemblage C Dog No2	ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGC <u>GGCCCT</u> ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGC <u>GGCCCT</u>
Assemblage C Dog No2	CAGGAAGGA <u>G</u> <u>GCC</u> CTCAAGA GCCTGAACGA CCTCGAGACC GGCATCGCCA CAGGAAGGA <u>G</u> <u>GCC</u> CTCAAGA GCCTGAACGA CCTCGAGACC GGCATCGCCA
Assemblage C Dog No2	CGGAGAACGC CGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC CGGAGAACGC CGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC
Assemblage C Dog No2	GCAGAGGGAT TCGCCCGCAT CTCCGCCGCC ATCGAGAAGG AGACGATCGC GCAGAGGGAT TCGCCCCCAT CTCCGCCGCC ATCGAGAAGG AGACGATCGC
Assemblage C Dog No2	CGCGCGAGAG <u>G GCC</u> GTCAGCG CAGCCACGAC CGAGGCGCTC ACAAACACGA TCGCGAGAG <u>G GCC</u> GTCAGCG CAGCCACGAC CGAGGCGCTC ACAAACACGA . 510
Assemblage C Dog No2	AGCTCGTCGA G AGCTCGTCGA G

B) Assemblage B- Accession number AY072725.1	L
--	---

		, 8
Assemblage	в	GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACACGCGT GTGAAGATGA
Dog Nol		GAACGAGATC GAGGTCCGCC GCGTCGAGGA CGACACGCGT GTGAAGATGA
		 60 70 80 90 100
Assemblage	в	TCAAGGACGC CATCGCGCAC CTTGACAGAC TCATCCAGAC AGAGTCGAGG
Dog Nol		TCAAGGACGC CATCGCGCAC CTCGACAGAC TCATCCAGAC AGAGTCGAGG
		 110 120 130 140 150
Assemblage	в	AAGCGCCAGG CCTCGTTCGA GGACATCCGC GAGGAAGTCA AGAAGTCTGC
Dog Nol		AAGCGCCAGG CCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCTGC
		 160 170 180 190 200
Assemblage	D	160 170 180 190 200 CGACAACATG TACCTGACGA TCAAGGAGGA GATCGACACT ATGGCCGCAA
Dog Nol	Б	CGACAACATG TACCTGACGA TCAAGGAGGA GATCGACACT ATGGCCGCAA
		210 220 230 240 250
Assemblage	в	ACTTCCGCAA GTCTCTTGCT GAGATGGGCG ACACGCTCAA CAACGTCGAG
Dog Nol		ACTTCCGCAA GTCTCTTGCT GAGATGGGCG ACACGCTCAA CAACGTCGAG
		260 270 280 290 300
Assemblage	в	ACGAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGCAGCCCT
Dog Nol		ACGAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGCAGCCCT
		310 320 330 340 350
Assemblage	в	TAGGAAGGAG GCCCTCAAGA GCCTGAACGA CCTCGAGACA GGCATCGCCA
Dog Nol		CAGGAAGGAG GCCCTCAAGA GCCTGAACGA CCTCGAGACA GGCATCGCCA
		····· · · · · · · · · · · · · · · · ·
		360 370 380 390 400
Assemblage Dog Nol	в	CGGAGAACGC CGAGAGGAAG AAGATGTATG ACCAGCTCAA CGAGAAAGTC CGGAGAACGC CGAGAGGAAG AAGATGTATG ACCAGCTCAA CGAGAAAGTC
DOG NOT		
		410 420 430 440 450
Assemblage	в	GCAGAGGGCT TCGCCCGCAT CTCCGCTGCC ATCGAGAAGG AGACGATCGC
Dog Nol		GCAGAGGGCT TCGCCCGCAT CTCCGCTGCC ATCGAGAAGG AGACGATCGC
		460 470 480 490 500
Assemblage	в	CCGCGAGAG <u>G GCC</u> GTCAGCG CCGCCACGAC AGA <u>GGCC</u> CTC ACAAACACGA
Dog Nol		CCGCGAGAG <u>G GCC</u> GTCAGCG CCGCCACGAC AGA <u>GGCC</u> CTC ACAAACACGA
		. 510
Assemblage	в	AGCTCGTCGA G
Dog Nol		AGCTCGTCGA G

D) Assemblage D- Accession number AY545647.1

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assemblage D	GAACGAGATC GAGGTCCGCC GCGTCGACGA TGACACGCGT GTCAAGATGA
Dog No3	GAACGAGATC GAGGTCCGCC GCGTCGACGA TGACACGCGT GTCAAGATGA
	·····
1	60 70 80 90 100 TCAAGGATGC CATCGCACAC CTTGACAGGC TCATTCAGAC GGAGTCGAGG
Assemblage D Dog No3	TCAAGGATGC CATCGCACAC CITGACAGGC TCATTCAGAC GGAGTCGAGG
bog Nos	
	110 120 130 140 150
Assemblage D	AAGCGCCAAA GCTCCTTCGA GGACATCCGC GAGGAGGTAA AGAAGTCCGC
Dog No3	AAGCGCCAGA GCTCCTTCGA GGACATCCGC GAGGAGGTAA AGAAGTCCGC
	····· ····· ····· ····· ····· ····· ····· ····· ·····
	160 170 180 190 200
Assemblage D Dog No3	TGACAACATG TATCTGACGA TCAAGGAGGA GATTGACACA ATGGCCGCAA TGACAACATG TATCTGACGA TCAAGGAGGA GATTGACACA ATGGCCGCAA
DOG NOS	
	210 220 230 240 250
Assemblage D	ACTTCCGCAA GTCCCTCGCA GAGATGGGCG AGACGCTCAA CAACGTCGAG
Dog No3	ACTTCCGCAA GTCCCTCGCA GAGATGGGCG AGACGCTCAA CAACGTCGAG
	260 270 280 290 300
Assemblage D	ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGCAGCTCT
Dog No3	ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGCAGCTCT
	310 320 330 340 350
Assemblage D	CAGGAAGGA <u>G GCC</u> CTCAAGA GCCTGAACGA CCTTGAGACC GGCATCGCTA
Dog No3	CAGGAAGGA <u>G GCC</u> CTCAAGA GCCTGAACGA CCTTGAGACC GGCATCGCTA
	360 370 380 390 400
Assemblage D	CGGAGAACGC CGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC
Dog No3	CGGAGAACGC CGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC
	410 420 430 440 450
Assemblage D	GCAGAGGGAT TCGCCCGTAT TTCCGCTGCC ATCGAGAAGG AGACGATCGC
Dog No3	GCAGAGGGAT TCGCCCGTAT TTCCGCTGCC ATCGAGAAGG AGACGATCGC
	460 470 480 490 500
Assemblage D	CCGCGAGAGA GCCGTCAGCG CAGCCACAAC AGAGGCTCTC ACAAACACGA
Dog No3	CCGCGAGAGA GCCGTCAGCG CAGCCACAAC AGAGGCTCTC ACAAACACGA
	···· ···· · 510
Assemblage D	AGCTCGTCGA G
Dog No3	AGCTCGTCGA G
2 -	

Jolanta Piekarska, Joanna Bajzert, Michał Gorczykowski, Magdalena Kantyka, Magdalena Podkowik. Molecular identification of Giardia duodenalis isolates from...

	E) Assemblage F- Accession number AY647264
	 10 20 30 40 50
Assemblage F	
Cat No2	GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACACGCGC GTGAAGATGA
	60 70 80 90 100
Assemblage F Cat No2	TCAAGGACGC CATCGCGCAC CTCGACAGGC TCATCCAGAC GGAGTCGAGG TCAAGGACGC CATCGCGCAC CTCGACAGGC TCATCCAGAC GGAGTCGAGG
Cat NOZ	
	110 120 130 140 150
Assemblage F	
Cat No2	AAGCGCCAGG CCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCCGC
	160 170 180 190 200
Assemblage F	
Cat No2	CGACAACATG TACCTGACGA TCAAGGAGGA GATCGACACC ATGGCAGCCA
	210 220 230 240 250
Assemblage F	
Cat No2	ACTTCCGCAA GTCCCTTGCA GAGATGGGCG ACACACTCAA CAATGTTGAG
	260 270 280 290 300
	ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGCGGCCCT
Cat No2	ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGCGGCCCT
	 310 320 330 340 350
Assemblage F	
Cat No2	CAGGAAGGAG GCCCTCAAGA GCCTGAACGA CCTCGAGACG GGCATCGCGA
	 360 370 380 390 400
Assemblage F	
Cat No2	CGGAGAACGC AGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC
	410 420 430 440 450
Assemblage F	GCAGAGGGGCT TCGCCCGCAT CTCCGCCGCC ATCGAGAAGG AGACGATCGC
Cat No2	GCAGAGGGGCT TCGCCCGCAT CTCCGCCGCC ATCGAGAAGG AGACGATCGC
	460 470 480 490 500
Assemblage F	CCGCGAGAGG GCCGTCAGCG CCGCCACGAC AGAGGCGCTC ACAAACACGA
Cat No2	CCGCGAGAGGGGCCGTCAGCG CCGCCACGAC AGAGGCGCTC ACAAACACGA
Assemblage F	510 AGCTCGTCGA G
Cat No2	AGCTCGTCGA G

	se strand comparison with assemblage C- Accession
Assemblage C	10 20 30 40 50 GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACACGCGC GTCAAGATGA
Dog No4	GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACAGCGC GTCAAGATGA
Assemblage C Dog No4	TCAAGGACGC CATCGCTCAC CTGGACAGGC TCATCCAGAC CGAGTCGAGG TCAAGGACGC CATCGCTCAC CTGGACAGGC TCATCCAGAC CGAGTCGAGG
Assemblage C Dog No4	AAGCGCCAGG GCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCCGC AAGCGCCAGG GCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCCGC
Assemblage C Dog No4	CGACAACATG TACCTGACGA TCAAGGAAGA AATCGACACC ATGGCCGCGA CGACAACATG TACCTGACGA TCAAGGAAGA AATCGACACC ATGGCCGCGA
Assemblage C Dog No4	ACTTCCGCAA GTCCCTCGCC GAGATGGGCG AGACCCTCAA CAACGTCGAG ACTTCCGCAA GTCCCTCGCC GAGATGGGCG AGACCCTCAA CAACGTCGAG
Assemblage C Dog No4	ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGC <u>GGCC</u> CT ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGC <u>GGCC</u> CT
Assemblage C Dog No4	CAGGAAGGA <u>G GCC</u> CTCAAGA GCCTGAACGA CCTCGAGACC GGCATCGCCA CAGGAAGGA <u>G GCC</u> CTCAAGA GCCTGAACGA CCTCGAGACC GGCATCGCCA
Assemblage C Dog No4	CGGAGAACGC CGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC CGGAGAACGC CGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC
Assemblage C Dog No4	GCAGAGGGAT TCGCCCCCAT CTCCGCCGCC ATCGAGAAGG AGACGATCGC GCAGAGGGAT TCGCCCCCAT CTCCGCCGCC ATCGAGAAGG AGACGATCGC
Assemblage C Dog No4	TCGCGAGAG <u>G GCC</u> GTCAGCG CAGCCACGAC CGAGGCGCTC ACAAACACGA TCGCGAGAG <u>G GCC</u> GTCAGCG CAGCCACGAC CGAGGCGCTC ACAAACACGA . 510
Assemblage C Dog No4	AGCTCGTCGA G AGCTCGTCGA G

B) The antisense strand comparison with assemb	lage C
(lack of cut place in 461bp)- Accession number	AY545646

	10 20 30 40 50
Assemblage C	GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACACGCGC GTCAAGATGA
Dog No4	GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACACGCGC GTCAAGATGA
	····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ·····
	60 70 80 90 100
Assemblage C	TCAAGGACGC CATCGCTCAC CTGGACAGGC TCATCCAGAC CGAGTCGAGG
Dog No4	TCAAGGACGC CATCGCACAC CTGGACAGGC TCATCCAGAC CGAGTCGAGG
	····· ····· ····· ····· ····· ····· ····· ····· ·····
	110 120 130 140 150
Assemblage C	AAGCGCCAGG GCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCCGC
Dog No4	AAGCGCCAGG GCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCCGC
	160 170 180 190 200
Assemblage C	CGACAACATG TACCTGACGA TCAAGGAGGA AATCGACACC ATGGCCGCGA
Dog No4	CGACAACATG TACCTGACGA TCAAGGAGGA AATCGACACC ATGGCCGCGA
bog No4	
	210 220 230 240 250
Assemblage C	ACTTCCGCAA GTCCCTCGCC GAGATGGGCG AGACCCTCAA CAACGTCGAG
Dog No4	ACTTCCGCAA GTCCCTCGCC GAGATGGGCG AGACCCTCAA CAACGTCGAG
	····· ····· ····· ····· ····· ····· ····· ····· ····· ·····
	260 270 280 290 300
Assemblage C	ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGC <u>GGCC</u> CT
Dog No4	ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGC <u>GGCC</u> CT
	 310 320 330 340 350
Assemblage C	310 320 330 340 350 CAGGAAGGAG GCCCTCAAGA GCCTGAACGA CCTCGAGACC GGCATCGCCA
Dog No4	CAGGAAGGAG GCCCTCAAGA GCCTGAACGA CCTCGAGACC GGCATCGCCA
bog not	
	360 370 380 390 400
Assemblage C	CGGAGAACGC CGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC
Dog No4	CGGAGAACGC CGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC
	····· ···· ···· ···· ···· ···· ···· ···· ····
	410 420 430 440 450
Assemblage C	GCAGAGGGAT TCGCCCGCAT CTCCGCCGCC ATCGAGAAGG AGACGATCGC
Dog No4	GCAGAGGGAT TCGCCCGCAT CTCCGCCGCC ATCGAGAAGG AGACGATCGC
	460 470 480 490 500
Assemblage C	CCGCGAGAGG GCCGTCAGCG CAGCCACCAC GGAGGCCCTC ACAAACACGA
Dog No4	TCGCGAGAGA GCCGTCAGCG CAGCCACAAC AGAGGCCCTC ACAAACACGA
209 109	
	510
Assemblage C	AGCTCGTCGA G
Dog No4	AGCTCGTCGA G

C) The antisense strand comparison with assemblage D (additional cut place in 296bp)- Accession number AY545647.1

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Assemblage D	GAACGAGATC GAGGTCCGCC GCGTCGACGA TGACACGCGT GTCAAGATGA
Dog No4	GAACGAGATC GAGGTCCGCC GCGTCGACGA CGACACGCGC GTCAAGATGA
	· · · · · · · · · · · · · · · · ·
	60 70 80 90 100
Assemblage D	TCAAGGATGC CATCGCACAC CTTGACAGGC TCATTCAGAC GGAGTCGAGG
Dog No4	TCAAGGACGC CATCGCACAC CTGGACAGGC TCATCCAGAC CGAGTCGAGG
	····· · · · · · · · · · · · · · · · ·
	110 120 130 140 150
Assemblage D	AAGCGCCAAA GCTCCTTCGA GGACATCCGC GAGGAGGTAA AGAAGTCCGC
Dog No4	AAGCGCCAGG GCTCGTTCGA GGACATCCGC GAGGAGGTCA AGAAGTCCGC
	160 170 180 190 200
Assemblage D	TGACAACATG TATCTGACGA TCAAGGAGGA GATTGACACA ATGGCCGCAA
Dog No4	CGACAACATG TACCTGACGA TCAAGGAGGA AATCGACACC ATGGCCGCGA
	· · · · · · · · · · · · · · · · ·
	210 220 230 240 250
Assemblage D	ACTTCCGCAA GTCCCTCGCA GAGATGGGCG AGACGCTCAA CAACGTCGAG
Dog No4	ACTTCCGCAA GTCCCTCGCC GAGATGGGCG AGACCCTCAA CAACGTCGAG
	260 270 280 290 300
Assemblage D	ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGCAGCTCT
Dog No4	ACAAACCTCC AGAACCAGAT CGCCATCCAC AACGACGCCA TCGCGGCCCT
	····· ····· ····· ····· ····· ····· ····· ····· ·····
	310 320 330 340 350
Assemblage D	CAGGAAGGA <u>G GCC</u> CTCAAGA GCCTGAACGA CCTTGAGACC GGCATCGCTA
Dog No4	CAGGAAGGA <u>G GCC</u> CTCAAGA GCCTGAACGA CCTCGAGACC GGCATCGCCA
	····· ····· ····· ····· ····· ····· ····· ····· ·····
	360 370 380 390 400
Assemblage D	CGGAGAACGC CGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC
Dog No4	CGGAGAACGC CGAGAGGAAG AAGATGTACG ACCAGCTCAA CGAGAAGGTC
	410 420 430 440 450
Assemblage D	GCAGAGGGAT TCGCCCGTAT TTCCGCTGCC ATCGAGAAGG AGACGATCGC
Dog No4	GCAGAGGGAT TCGCCCGCAT CTCCGCCGCC ATCGAGAAGG AGACGATCGC
-	· · · · · [· · · ·] · · · · [· · · ·
	460 470 480 490 500
Assemblage D	CCGCGAGAGA GCCGTCAGCG CAGCCACAAC AGAGGCTCTC ACAAACACGA
Dog No4	TCGCGAGAGA GCCGTCAGCG CAGCCACAAC AGAGGCTCTC ACAAACACGA
	510
Assemblage D	AGCTCGTCGA G
Dog No4	AGCTCGTCGA G

Figure 2 A–C. Comparison of G. duodenalis sequencing product from a dog with the pattern of assemblages C and D. Alignment based on maximum similarity of individual assemblages of G. duodenalis in the classification of Lalle et al. 2005. The underlined zone indicates a cut place of restrictive enzyme. The grey zone indicates differences in DNA sequence (no consensus at this position)

Jolanta Piekarska, Joanna Bajzert, Michał Gorczykowski, Magdalena Kantyka, Magdalena Podkowik. Molecular identification of Giardia duodenalis isolates from...

DISCUSSION

Giardia duodenalis occurs in dogs and cats all over the world and is one of the major parasites responsible for the symptoms of the gastrointestinal tract. Extensiveness of the invasion is varied and depends on the geographical location, different hygiene conditions in the region, as well as different diagnostic methods usage. Because the diagnosis of Giardia invasion based on classical methods (faecal flotation or faecal smear) is problematic, commercial immunoassays are therefore increasingly used to detect the presence of parasite protein secretion in animal faeces. Giardiasis is a very common disease and invasion prevalence ranges from 5–80%, depending on the age of the animals. The highest prevalence (46–50%) is observed in young dogs less than one year old, and in animals with diarrhea [10, 11]. In Poland in 2001–2006, the prevalence of Giardia invasion in dogs in Poznan was about 10%, in Warsaw it ranged from 9% to over 50%, in Lublin about 53%, in Pulawy - 10% and Gdansk over 16%. Significant differences in prevalence values resulted from the different number of animals in age groups and differences of their clinical condition [12]. In the presented study, the prevalence of G. duodenalis in dogs was 21.1% and in cats - 15.1%. The use of enzyme immunoassay test for detecting soluble Giardia antigens in faeces increases the probability of invasion detection. Studies conducted in Europe (especially in countries such as the UK, Spain, Netherlands, Italy, Germany, Belgium) using the SNAP Giardia Test (IDEXX Laboratories) showed the presence of G. duodenalis invasion in approximately 25% of dogs and 20% of cats with gastrointestinal signs [11]. In the USA, the prevalence of G. duodenalis invasion in animals with symptoms of the gastrointestinal tract was 15.6% in dogs and 10.8% in cats [13]. Similar results were obtained in Canada, where the prevalence was 13% in dogs and 4.1% in cats, and in Japan, where the prevalence of Giardia invasion in 1997-2007 in pet dogs remained unchanged at the level of about 15% [14]. In Brazil, the percentage of infected dogs was 16.9% [15]. Usually, for the molecular identification of G. duodenalis, PCR and its modifications (nested-PCR, semi-nested PCR, PCR-RFLP, real-time PCR) or Giardia DNA hybridization with a molecular probes (microarray technique and FISH technique) are used. Analysis of the genetic material is helpful in answering the question whether Giardia detected in a dog or cat can be a source of infection for humans. The most preferred is amplification of the β -Giardin encoding gene [9]. Giardins are specific structural proteins with a mass of 29-38 kDa, unique for this protozoan [16]. The integral part of each trofozoit sucker are α - and β -giardins, while on the surface of G. duodenalis cell membrane, a further 10 specific proteins are identified. Genetic research conducted in Poland revealed in affected dogs an occurrence of assemblages A-1, C and D in Warsaw, and only C and D assemblages in Poznan [17, 18]. Molecular analysis of isolates obtained from cats in Warsaw showed the presence of assemblages A, B and D [19]. Current studies in animals in Wroclaw confirmed the presence of specific assemblages C, D, mixed assemblages of C and D, and zoonotic assemblage B in stool samples derived from dogs. In cats, the presence of assemblage F was revealed, but the zoonotic assemblage A was also detected. The study of 55 dogs in Germany, with no apparent clinical signs of disease, revealed the presence of genotype A in 60% of tested animals, mixed infections with assemblages A and

C in 27.3%, while the individual assemblages C and D were rarely recorded, respectively, in 9.1% and 3.6% of dogs.

In dogs in Spain, the most commonly circulating assemblages were B, D, followed by C, A, E and F [20]. The study not only confirmed the high prevalence of *G. duodenalis* among dogs with no clinical signs of disease, but also showed that zoonotic assemblage A is common in urban pet dogs, and even more common than assemblages typical for dogs. Although dogs owners' stools samples were not studied, the results indicate that a large proportion of urban dogs infected with zoonotic genotypes of *Giardia* are a reservoir for human invasion [21].

As in the presented study, the results of genotyping of Giardia isolates present in dogs in different regions of the world indicate that in these animals specific assemblages C and D usually predominate. Such results were obtained in dogs in Hungary, Brazil and Australia [22, 15, 23]. Similarly, non-zoonotic assemblages were identified more often in dogs in Italy (C and D), and assemblage A or mixed-induced invasion with zoonotic and non-zoonotic assemblages occurred only in individual animals [9]. Also in Australia, zoonotic assemblages A and B have been found only in individual animals, which indicated that dogs and cats are not a significant reservoir of invasive isolates of Giardia for humans [23]. In turn, other researchers from Germany, Japan and Thailand detected zoonotic assemblage A of G. duodenalis in dogs more often than assemblages C and D that are specific for canines [24, 25]. Higher prevalence of zoonotic Giardia assemblages were found in dogs that were kept singly than in dogs kept in groups [22]. This confirms earlier suggestions that individual dogs bred in house are infected by Giardia from the owners or householder, while the dogs kept in high density are infected with parasite assemblages specific for canids.

Although most of the invasion found in cats is caused by non-pathogenic to humans assemblages D and F, it has been shown that these animals are also a potential source of zoonotic *G. duodenalis* assemblages [5, 9, 22, 23]. Research carried out in Poland on cats from Warsaw confirmed the presence of assemblages A and B, next to assemblages D specific for cats [19]. Also, the results of the presented study, in which apart from assemblage F specific for cats, the zoonotic assemblage A was also found, indicating a potential threat to human health.

The issue that in 5 positive samples tested with the SNAP *Giardia* Test (IDEXX Laboratories) nested PCR failed can be explained by insufficient numbers of parasite's DNA for amplification [26].

CONCLUSIONS

The results confirm the presence of assemblages C and D in dogs, and assemblage F in cats in the vicinity of Wroclaw. Stating the presence of assemblage A and B suggests that infected pets can pose a threat to human health. This study describes for the first time the presence of mixed infections within host-specific C and D genotypes in dogs in Poland.

Acknowledgements

The study was supported by statutory research and development activity funds assigned to the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland.

Annals of Agricultural and Environmental Medicine 2016, Vol 23, No 3

Jolanta Piekarska, Joanna Bajzert, Michał Gorczykowski, Magdalena Kantyka, Magdalena Podkowik. Molecular identification of Giardia duodenalis isolates from...

REFERENCES

- 1. Ortega YR, Adam RD. Giardia: overview and update. Clin Infect Dis. 1997; 25: 545–549.
- Itoh N, Muraoka N, Saeki H, Aoki M, Itagaki T. Prevalence of *Giardia* intestinalis infection in dogs of breeding kennels in Japan. J Vet Med Sci. 2005; 67: 717–718.
- Xiao L, Fayer R. Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. Int J Parasitol. 2008; 38: 1239–1255.
- 4. Dryden MW, Payne PA, Smith V. Accurate diagnosis of *Giardia spp.* and proper fecal examination procedures. Vet Ther. 2006; 7: 4–14.
- Monis PT, Andrews RH, Mayrhofer G, Ey PL. Molecular systematics of the parasitic protozoa *Giardia intestinalis*. Mol Biol Evol. 1999;16: 1135–1144.
- Caccio SM, Thompson RCA, McLaughlin J, Smith HV. Unraveling Cryptosporidium and Giardia epidemiology. Trends Parasitol. 2005; 21: 430–437.
- Traub RJ, Monis PT, Robertson I, Irwin P, Mencke N, Thompson RC. Epidemiological and molecular evidence supports the zoonotic transmission of Giardia among humans and dogs living in the same community. Parasitology. 2004; 128: 253–262.
- Read CM, Monis PT, Thompson RC. Discrimination of all genotypes of *Giardia duodenalis* at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol. 2004; 4; 125–130.
- 9. Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, Caccio SM. Genetic heterogeneity at the beta-giardin locusamong human and animal isolates of *Giardia duodenalis* and identification of potentially zoonotic subgenotypes. Int J Parasitol. 2005: 35: 207–213.
- 10. Itoh N, Kanai K, Hori Y, Hoshi F, Higuchi S. Prevalence of *Giardia intestinalis* and other zoonotic intestinal parasites in private household dogs of the Hachinohe area in Aomori prefecture, Japan in 1997, 2002 and 2007. J Vet Sci. 2009; 10: 305–308.
- Epe C, Rehkter G, Schnieder T, Lorentzen L, Kreienbrock L. Giardia in symptomatic dogs and cats in Europe-results of a European study. Vet Parasitol. 2010; 173: 32–38.
- 12. Polozowski A, Piekarska J, Pacon J, Zawadzki W, Bednarz-Nabzdyk R, Cislo-Pakuluk A, Stochnij P. Prewalencja inwazji *Giardia duodenalis* u psów i kotów z terenu Wrocławia i Dolnego Śląska. Magazyn Weterynaryjny. 2011; 2: 168–172.
- Carlin EP, Bowman DD, Scarlett JM, Garrett J, Lorentzen L. Prevalence of Giardia in symptomatic dogs and cats throughout the United States as determined by the IDEXX SNAP Giardia test. Vet Ther. 2006; 7: 199–206.

- 14. Olson ME, Leonard NJ, Strout J. Prevalence and diagnosis of Giardia infection in dogs and cats using a fecal antigen test and fecal smear. Can Vet J. 2010; 51: 640–642.
- Paz e Silva FM, Monobe MM, Lopes RS, Araujo JP Jr. Molecular characterization of Giardia duodenalis in dogs from Brazil. Parasitol Res. 2011; 110: 325–334.
- 16. Caccio SM, De Giacomo M, Pozio E. Sequence analysis of the betagiardin gene and development of a polymerase chain reaction restriction fragment length polymorphism assay to genotype *Giardia duodenalis* cysts from human faecal samples. Int J Parasitol. 2002; 32: 1023–1030.
- Zygner W, Jaros W, Skowrońska M, Bogdanowicz-Kamirska M, Wędrychowicz H. Prevalence of *Giardia intestinalis* in domestic dogs in Warsaw. Wiad Parazytol. 2006; 52: 311–315.
- Stolarczyk P, Majewska AC. A survey of the prevalence and genotypes of *Giardia duodenalis* infecting household and sheltered dogs. Parasitol Res. 2010; 106: 1015–1019.
- Jaros D. Zygner W, Jaros S, Wędrychowicz H. Detection of *Giardia* intestinalis assemblages A, B and D in domestic cats from Warsaw, Poland. Pol J Microbiol. 2011; 60: 259–263.
- Dado D, Montoya A, Blanco MA, Miró G, Saugar JM, Bailo B, Fuentes I.Prevalence and genotypes of Giardia duodenalis from dogs in Spain: possible zoonotic transmission and p ublic health importance. Parasitol Res. 2012; 111(6): 2419–2422.
- Leonhard S, Pfister K, Beelitz P, Wielinga C, Thompson R.C. The molecular characterization of Giardia from dogs in southern Germany. Vet Parasitol. 2007; 150: 33–38.
- 22. Monis PT, Andrews PT, Mayrhofer G, Ey PL. Genetic diversity within the morphological species *Giardia intestinalis* and its relationship to host origin. Infect Genet Evol. 2003; 3: 29–38.
- 23. Palmer CS, Traub RJ, Robertson I., Devlin G, Rees R, Thompson RC. Determining the zoonotic significance of Giardia and Cryptosporidium in Australian dogs and cats. Vet Parasitol. 2008; 154: 142–147.
- 24. Itagaki T, Kinoshita S, Aoki M, Itoh N, Saeki H, Sato N, Uetsuki J, Izumiyama S, Yagita, K, Endo T. Genotyping of *Giardia intestinalis* from domestic and wild animals in Japan using glutamate dehydrogenase gene sequencing. Vet Parasitol. 2005; 144: 283–287.
- Inpankaew T, Traub R, Thompson RC, Sukthana Y. Canine parasitic zoonoses in Bangkok temples. Southeast Asian J Trop Med Public Health. 2007; 38: 247–255.
- 26. AdamskaM, Leońska-Duniec A, Maciejewska A, Sawczuk M, Skotarczak B. Recovery of DNA of *Giardia intestinalis* cysts from surface water concentrates measured with PCR and real time PCR. Parasite. 2011; 18: 341–343.